Director

 Professor John Tsamopoulos

members-tsamopoulos

Email: tsamo [at] chemeng.upatras.gr

 

Download Business card (as PDF)

 

Curriculum Details

 Studies

Diploma, Chemical Engineering, National Technical University of Athens, 1979.

M.S. Chemical Engineering, Mass. Inst. of Technology, 1981.

Ph.D.,Chemical Engineering, Mass. Inst. of Technology, 1985.

 Selected publications

Tsamopoulos, J., Dimakopoulos, Y Chatzidai N., Karapetsas, G. and Pavlidis M., “Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment” J. Fluid Mech., 601, 123–164 (2008), DOI: 10.1017/S0022112008000517

Chatzidai, N. Giannousakis, A. Dimakopoulos, Y. and Tsamopoulos, J. “On the elliptic mesh generation in domains containing multiple inclusions and undergoing large deformations”, J. Comp. Phys. 228 1980–2011 (2009), DOI: 10.1017/S002211200800051710.1016/j.jcp.2008.11.020

Papaioannou, J., Karapetsas, G., Dimakopoulos Y. and Tsamopoulos, J. “Injection of a viscoplastic material inside a tube or between parallel disks: conditions for wall detachment of the advancing front J. Rheol. 53(5), 1155-1191 (2009), DOI: 10.1122/1.3191779

Pavlidis, M., Dimakopoulos, Y. and Tsamopoulos, J. ‘Steady viscoelastic film flow over 2D topography: I. The effect of viscoelastic properties under creeping flow”, J. Non Newt. Fluid Mech., 165, 576-591 (2010), DOI: 10.1016/j.jnnfm.2010.02.017

Chatzidai, A. Dimakopoulos, Y. and Tsamopoulos, J., “Viscous effects on two interacting and deformable bubbles under a step change in pressure” J. Fluid Mech., 673, 513-547 (2011), DOI: 10.1017/S0022112010006361

Dimakopoulos, Y., Pavlidis, M. and Tsamopoulos, J. “Steady bubble rise in Herschel-Bulkley fluids and comparison of predictions via the Augmented Lagrangian Method with those via the Papanastasiou model” J. Non Newt. Fluid Mech., 200, 34-51 (2013), DOI: 10.1016/j.jnnfm.2012.10.012

Karapetsas, G. and Tsamopoulos, J. “On the stick-slip flow from slit and cylindrical dies of a Phan-Tien and Tanner fluid model: II. Linear stability analysis to two- and three-dimensional disturbances”, Phys. Fluids, 25, 093105 (2013), DOI: 10.1063/1.4821805

 

Download Full CV  Google Scholar