Authors
Zacharioudaki M., Kouris C., Dimakopoulos Y., Tsamopoulos J.
Abstract
A Volume Tracking (VT) and a Front Tracking (FT) algorithm are implemented and compared for locating the interface between two immiscible, incompressible, Newtonian fluids in a tube with a periodically varying, circular cross-section. Initially, the fluids are stationary and stratified in an axisymmetric arrangement so that one is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). A constant pressure gradient sets them in motion. With both VT and FT, a boundary-fitted coordinate transformation is applied and appropriate modifications are made to adopt either method in this geometry. The surface tension force is approximated using the continuous surface force method. All terms appearing in the continuity and momentum equations are approximated using centered finite differences in space and one-sided forward finite differences in time. In each time step, the incompressibility condition is enforced by a transformed Poisson equation, which is linear in pressure. This equation is solved by either direct LU decomposition or a Multigrid iterative solver. When the two fluids have the same density, the former method is about 3.5 times faster, but when they do not, the Multigrid solver is as much as 10 times faster than the LU decomposition. When the interface does not break and the Reynolds number remains small, the accuracy and rates of convergence of VT and FT are comparable. The well-known failure of centered finite differences arises as the Reynolds number increases and leads to non-physical oscillations in the interface and failure of both methods to converge with mesh refinement. These problems are resolved and computations with Reynolds as large as 500 converged by approximating the convective terms in the momentum equations by third-order upwind differences using Lagrangian Polynomials. When the volume of the core fluid or the Weber number decrease, increasing the importance of interfacial tension and leading to breakup of the interface forming a drop of core fluid, the FT method converges faster with mesh refinement than the VT method and upwinding may be required. Finally, examining the generation of spurious currents around a stationary “bubble” in the tube for Ohnesorge numbers between 0.1 and 10 it is found that the maximum velocity remains approximately the same in spite mesh refinements when VT is applied, whereas it is of the same order of magnitude for the coarsest mesh and monotonically decreases with mesh refinement when FT is applied. © 2007 Elsevier Inc. All rights reserved.
Keywords
Front tracking, Multigrid, Multiphase flow, Upwinding, Volume tracking