Authors
Chatzidai N., Giannousakis A., Dimakopoulos Y., Tsamopoulos J.
Abstract
We present an improved method to generate a sequence of structured meshes even when the physical domain contains deforming inclusions. This method belongs to the class of Arbitrary Lagrangian-Eulerian (ALE) methods for solving moving boundary problems. Its tools are either (a) separate mappings of the domain boundaries and enforcing the node distribution on lines emanating from singular points or (b) domain decomposition and separate mappings of each subdomain using suitable coordinate systems. The latter is shown to be more versatile and general. In both cases a set of elliptic equations is used to generate the grid extending in this way the method advanced by Dimakopoulos and Tsamopoulos [Y. Dimakopoulos, J.A. Tsamopoulos, A quasi-elliptic transformation for moving boundary problems with large anisotropic deformations, J. Comput. Phys. 192 (2003) 494-522]. We shall present examples where this earlier method and all other mesh generating methods which are based on a conformal mapping or solving a quasi-elliptic set of PDEs fail to produce an acceptable mesh and accurate solutions in such geometries. Furthermore, in contrast to other methods, appropriate boundary conditions and constraints such as, orthogonality of specific mesh lines and prespecified node distributions on them, can be easily implemented along a specific part of the domain or its boundary. Hence, no attractive terms at specific corners or singular points are needed. To increase the mesh resolution around the moving interfaces while keeping low the memory requirements and the computational time, a local mesh refinement technique has been incorporated as well. The method is demonstrated in two challenging examples where no remeshing is required in spite of the large domain deformations. In the first one, the transient growth of two bubbles embedded in a viscoelastic filament undergoing stretching in the axial direction is examined, while in the second one the linear and non-linear dynamics of two bubbles in a viscous medium are determined in an acoustic field. The large elasticity of the filament in the first case or the large inertia in the second case coupled with the externally induced large deformations of the liquid domain requires the accurate calculation which is achieved by the method we propose herein. The governing equations are solved using the finite element/Galerkin method with appropriate modifications to solve the hyperbolic constitutive equation of a viscoelastic fluid. These are coupled with an implicit Euler method for time integration or with Arnoldi’s algorithm for normal mode analysis. © 2008 Elsevier Inc. All rights reserved.
Keywords
Elliptic mesh generation, Moving boundary problems, Structured meshes